If it's not what You are looking for type in the equation solver your own equation and let us solve it.
g^2+6g=84
We move all terms to the left:
g^2+6g-(84)=0
a = 1; b = 6; c = -84;
Δ = b2-4ac
Δ = 62-4·1·(-84)
Δ = 372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{372}=\sqrt{4*93}=\sqrt{4}*\sqrt{93}=2\sqrt{93}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{93}}{2*1}=\frac{-6-2\sqrt{93}}{2} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{93}}{2*1}=\frac{-6+2\sqrt{93}}{2} $
| g=15-9 | | 15-(-6x)=45 | | 30+19x+90+3=180 | | 3+5=o | | -8m-10=38 | | 35-(8x+7)=14-x | | 3(6x+12)=90 | | (x+4.5)^2=0 | | -12f+76=4 | | 88÷x+10=18 | | 6x–21=9 | | a2+144=156 | | 12^x=74 | | 15x−1330=32x | | 7^-1=-8x | | 7x+9=3x15 | | 1,575/21=s | | 1,575/s=21 | | 1,575s=21 | | y/3÷4=1 | | –5+3=v | | 19/w=3,135 | | 3x-1x+5=180 | | 3,135w=17 | | -7m-1=20 | | -32+10b=−32 | | 7p+13=2p+3 | | 12n=6=78 | | 2.5(x+14)+x=38 | | -(6x+2)+14=48 | | 43=20x/3 | | 4/z=32/104 |